Syntheses and Crystal Structures of Triangular Rhodium and Iridium Complexes with Triply Bridging Sulfido Ligands

Takanori NISHIOKA and Kiyoshi ISOBE Institute for Molecular Science, Myodaiji, Okazaki 444

Reaction of $[MCp*(NCMe)_3]^{2+}$ (M=Rh, Ir; $Cp*=\eta^5$ -C5Me5) with Na₂S in MeCN affords $[(MCp*)_3(\mu_3-S)_2]^{2+}$. X-Ray structural characterization of their BF₄ salts shows that they have equilateral triangle M₃ core with two triply bridging sulfido ligands on both sides of the M₃ plane. Cyclic voltammograms of the rhodium and iridium complexes in MeCN show three and two chemically reversible processes, respectively.

The S,S- bicapped triangular cobalt clusters with cyclopentadienyls are of current interest in possessing a unique electronic configuration and solid-state magnetic properties. [(CoCp)₃(μ_3 -S)₂] (Cp= η^5 -C₅H₅) was first prepared from [CoCp(CO)₂] with (t-BuN)₂S by Otsuka, Nakamura, and Yoshida in 1968, and then recently, [(CoCp')₃(μ_3 -S)₂] (Cp'= η^5 -C₅H₄Me) and its oxidized forms were obtained from [CoCp'(CO)₂] with CS₂. 1a) On other cobalt triad, Rh and Ir, no corresponding analogues have been discovered, although several similar reactions using [(RhCp*)₂(CO)₂] with S₈, [RhCp(PPh₃)₂] with S₈, [RhCp*(Ph)(H)PMe₃] with CS₂, [RhCp*Cl(μ_2 -Cl)]₂ with (Me₃Si)₂S, and [IrCp*(SH)PMe₃(Cl)] with (Me₃Si)₂NLi⁷) have been attempted to date. We have found a convenient synthetic method to prepare [(MCp*)₃(μ_3 -S)₂]²⁺ (M=Rh, Ir) from [MCp*(NCMe)₃]²⁺ and Na₂S. Here we report on the synthesis and X-ray structural analysis of the triangular 48-electron dication.

[(RhCp*)₃(μ_3 -S)₂](BPh₄)₂ (1) was synthesized as follows; a mixture of [RhCp*Cl(μ_2 -Cl)]₂⁸⁾ (556 mg) and AgOTf (925 mg) (OTf=O₃SCF₃) was stirred in MeCN (50 cm³) for 30 min. A white precipitate of AgCl was removed from the mixture and the filtrate containing [RhCp*(NCMe)₃]²⁺⁸⁾ was added to a suspension of Na₂S•9H₂O (410 mg) in MeCN (100 cm³). After stirring for 2 h, the reaction mixture was filtered to remove a black precipitate. The filtrate was treated with NaBPh₄ (580 mg) in MeCN (30 cm³) and evaporated to dryness under a reduced pressure. The remaining solid was washed with CH₂Cl₂-MeOH (2:1). The solid was recrystallized from Me₂CO-MeOH (5:1) to give 1⁹) as brown microcrystals in a 33% yield based on Rh. [(RhCp*)₃(μ_3 -S)₂](BF₄)₂ (2)¹⁰) was obtained from 1 by replacement of BPh₄- with BF₄- of Ph₄PBF₄ in a 89% yield. It was recrystallized from CH₂Cl₂-C₆H₆ to give dark orange crystals used for structural characterization.

[(IrCp*)₃(μ_3 -S)₂](BPh₄)₂ (3)¹¹) or [(IrCp*)₃(μ_3 -S)₂](BF₄)₂ (4)¹²) was prepared in a 28% or 90% (from 3) yield in a similar manner using [IrCp*Cl(μ_2 -Cl)]₂⁸) or 3 and Ph₄PBF₄. Compound 4 was recrystallized from Me₂CO. Both 1 and 3 are soluble in Me₂CO, MeCN and MeNO₂, while 2 and 4 are amphiphilic, and are soluble in water and in organic solvents such as CH₂Cl₂ and MeCN. The reactions are not

straightforward and give messy products: reaction mixtures show many methyl proton signals from the Cp* groups in the 1H NMR spectra between $\delta=1.5$ —2.3. Isolation of $[(MCp^*)_3(\mu_3-S)_2]^{2+}$ is nevertheless easy because only its BPh₄ salt is less soluble in CH₂Cl₂ and MeOH as compared with many other unknown products. It is worthwhile to note that the triangular framework is also assembled directly by using the M(III) ions of $[MCp^*(NCMe)_3]^{2+}$ (M=Rh, Ir) instead of the M(I) ions applied for the synthesis of $[(CoCp)_3(\mu_3-S)_2]^{.2}$

X-Ray structural analyses of 2^{13} and 4^{14}) reveal that they are isostructural and contain an equilateral triangle framework of three metal atoms capped on both faces by two μ_3 -S atoms. The M_3S_2 core has a D_{3h} symmetry similar to that of $[(CoCp')_3(\mu_3-S)_2]^{2+1a})$ as shown in Fig. 1 for 2. Selected bond distances and angles are tabulated in Table 1. There is no significant difference between 2 and 4. The Rh–Rh distance (2.830(2) Å) in 2 and the Ir–Ir one (2.832(1) Å) in 4 are in the ranges of the corresponding metal–metal single bond length in other complexes (2.70-2.87 Å) for Rh–Rh, 2.65-3.09 Å for Ir–Ir). Each of 2 and 4 possesses 48 valence electrons that are needed for a metal triangle with three single bonds. The Rh–S (2.285(2) Å) and Ir–S (2.289(3)Å) distances are shorter and the M–S–M angles in $(76.5(1)^\circ)$ and $(76.4(1)^\circ)$ are smaller than those in the other triangular sulfido complexes (the M–S distances: (2.29-2.45 Å) for rhodium complexes, (2.31-2.40 Å) for iridium ones; the M–S–M angles: $(78.19(7)-82.5(1)^\circ)$ for each complex) such as $(78.19(1)-82.5(1)^\circ)$ for each complex) such as $(78.19(1)-82.5(1)^\circ)$ $(78.19(1)-82.5(1)^\circ)$ (78.19(

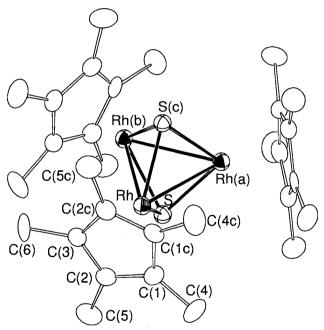


Fig. 1. ORTEP drawing of 2 showing 50% probability ellipsoids. A three-fold axis and a mirror plane pass through atoms S, S(c) and Rh, Rh(a), Rh(b), respectively.

The cyclic voltammogram of 2^{17}) with the 48-electron configuration reveals that it undergoes three chemically reversible reductions to form in turn the 49-electron monocation, 50-electron neutral molecule, and 51-electron monoanion. This electrochemical behavior is similar to that observed in $[(CoCp)_3(\mu_3-S)_2]^{1d}$) and $[(CoCp)_3(\mu_3-S)_2]^{1a}$) On the other hand, only two reversible reductions forming 49- and 50-electron complexes were observed for 4^{18}) in the same solvent.

	2	4
M-M	2.830(2)	2.832(1)
M-S	2.285(2)	2.289(3)
M-C(1)	2.185(9)	2.19(1)
M-C(2)	2.195(7)	2.219(9)
M-C(3)	2.20(1)	2.22(1)
M-S-M	76.5(1)	76.4(1)
S-M-S	88.69(8)	88.9(1)

Table 1. Selected bond distances (Å) and angles (°) of 2 and 4

Intriguingly, the 49-electron species of the Ir complex is much unstable thermodynamically as compared with that of the Rh complex because the difference of the half potentials between 48e/49e and 50e/49e waves in the Ir complex ($\Delta E_{1/2}$ =0.19 V) is much smaller than that in the Rh complex ($\Delta E_{1/2}$ =0.40 V).¹⁹)

In order to elucidate the electronic and magnetic behaviors and to compare with the cobalt triad triangular complexes, we are now trying to isolate a series of 50/49/48-electron complexes analogous to that in the cobalt triangular complexes¹⁾ by chemical reduction of 2 or 4, or by using M(III) and/or M(I) complexes (M=Rh, Ir) as starting materials.

References

- a) C. R. Pulliam, J. B. Thoden, A. M. Stacy, B. Spencer, M. H. Englert, and L. F. Dahl, J. Am. Chem. Soc., 113, 7398 (1991); b) M. Sorai, A. Kosaki, H. Suga, S. Seki, T. Yoshida, and S. Otsuka, Bull. Chem. Soc. Jpn., 44, 2364 (1971); c) A. B. Rives, X.-Z. You, and R. F. Fenske, Inorg. Chem., 21, 2286 (1982); d) T. Madach and H. Vahrenkamp, Chem. Ber., 114, 505 (1981).
- 2) S. Otsuka, A. Nakamura, and T. Yoshida, Liebigs Ann. Chem., 719, 54 (1968).
- 3) H. Brunner, N. Janietz, W. Meier, B. Nuber, J. Wachter, and M. L. Ziegler, *Angew. Chem., Int. Ed. Engl.*, 27, 708 (1988).
- 4) Y. Wakatsuki, H. Yamazaki, and C. Cheng, J. Organomet. Chem., 372, 437 (1989).
- 5) W. D. Jones, V. L. Chandler, and F. J. Feher, Organometallics, 9, 164 (1990).
- 6) A. E. Skaugset, T. B. Rauchfuss, and S. R. Wilson, Organometallics, 9, 2875 (1990).
- 7) D. A. Dobbs and R. G. Bergman, J. Am. Chem. Soc., 114, 6908 (1992).
- 8) C. White, A. Yates, and P. M. Maitlis, *Inorg. Synth.*, 29, 228 (1992).
- 9) Characterization of 1: Anal. Found: C, 65.55; H, 6.03%. Calcd for $C_{78}H_{85}B_2Rh_3S_2$: C, 66.12; H, 6.05%. FAB-MS: m/z 778 for [M]+, 389 for [M]²⁺. ¹H NMR (CD₃NO₂, 23 °C, TMS): δ 7.32—7.37 (m, BPh₄, 16H), 7.00 (t, J_{H-H} =7.4 Hz, BPh₄, 16H), 6.84 (t, J_{H-H} =7.2 Hz, BPh₄, 8H), 2.07 (s, C₅Me₅, 45H). ¹³C NMR (CD₃NO₂, 23 °C, TMS): δ 165.4 (quar, J_{C-B} =49 Hz, BPh₄), 137.2 (s, BPh₄), 127.1 (quar, J_{C-B} =3 Hz, BPh₄), 123.3 (s, BPh₄), 107.8 (m, C_5 Me₅), 11.8 (s, C₅Me₅). ¹⁰³Rh NMR (CD₃NO₂, 23 °C, references used $\mathcal{E}(^{103}Rh)$ =12.6 MHz): δ 1323 (s).

- 10) Characterization of **2**: Anal. Found: C, 37.58; H, 4.60%. Calcd for $C_{30}H_{45}B_{2}F_{8}Rh_{3}S_{2}$: C, 37.84; H, 4.76%. FAB-MS: m/z 865 for [M(BF₄)]+, 778 for [M]+, 389 for [M]²⁺. ¹H NMR (CD₃NO₂, 23 °C, TMS): δ 2.09 (s, C₅Me₅, 45H). ¹³C NMR (CD₃NO₂, 23 °C, TMS): δ 107.8 (m, C₅Me₅), 11.8 (s, C₅Me₅).
- 11) Characterization of 3: Anal. Found: C, 54.78; H, 5.09%. Calcd for $C_{78}H_{85}B_2Ir_3S_2$: C, 55.60; H, 5.08%. FAB-MS: m/z 1046 for [M]+, 523 for [M]²⁺. ¹H NMR (CD₃NO₂, 23 °C, TMS): δ 7.32—7.37 (m, BPh₄, 16H), 7.00 (t, J_{H-H} =7.4 Hz, BPh₄, 16H), 6.84 (t, J_{H-H} =6.5 Hz, BPh₄, 8H), 2.36 (s, C_5Me_5 , 45H). ¹³C NMR (CD₃NO₂, 23 °C, TMS): δ 165.4 (quar, J_{C-B} =49 Hz, BPh₄), 137.3 (s, BPh₄), 127.1 (quar, J_{C-B} =3 Hz, BPh₄), 123.3 (s, BPh₄), 101.9 (s, C_5Me_5), 11.4 (s, C_5Me_5).
- 12) Characterization of 4: Anal. Found: C, 29.54; H, 3.69%. Calcd for $C_{30}H_{45}B_2F_8Ir_3S_2$: C, 29.53; H, 3.72%. FAB-MS: m/z 1133 for [M(BF₄)]+, 1046 for [M]+, 523 for [M]²⁺. ¹H NMR (CD₃NO₂, 23 °C, TMS): δ 2.38 (s, C₅Me₅, 45H). ¹³C NMR (CD₃NO₂, 23 °C, TMS): δ 101.9 (s, C₅Me₅), 11.4 (s, C₅Me₅).
- 13) Crystallographic data for 2: $C_{30}H_{45}B_2F_8Rh_3S_2$, Mw=952.13, hexagonal, space group $P6_3/m$ (No. 176), a=11.412(1), c=15.746(1) Å, V=1775.8(5)Å³, Z=2, $\mu(MoK\alpha)=1.56$ mm⁻¹, $D_m=1.78$ Mg m⁻³, $D_x=1.781$ Mg m⁻³. Intensity data ($|F_o| \ge 3\sigma(|F_o|)$) were collected on a Rigaku AFC-5 diffractometer with graphite-monochromated Mo $K\alpha$ radiation $\lambda=0.71073$ in the $20 \le 60^\circ$ range at 296 K. The structure was solved and refined by using the Xtal 3.2 program. The current R value is 0.056 ($R_w=0.059$) for 1010 independent absorption-corrected reflections by Gaussian method (W. R. Busing and H. A. Levy, *Acta Crystallogr.*, 10, 180 (1957)).
- 14) Crystallographic data for 4: $C_{30}H_{45}B_2F_8Ir_3S_2$, Mw=1220.07, hexagonal, space group $P6_3/m$ (No. 176), a=11.419(1), c=15.753(2) Å, V=1779.1(5)Å³, Z=2, $\mu(MoK\alpha)=11.37$ mm⁻¹, $D_m=2.27$ Mg m⁻³, $D_x=2.278$ Mg m⁻³. Intensity data ($|F_o| \ge 3\sigma(|F_o|)$) were collected on a Rigaku AFC-5 diffractometer with graphite-monochromated Mo $K\alpha$ radiation $\lambda=0.71073$ in the $20 \le 60^\circ$ range at 296 K. The structure was solved and refined by using the Xtal 3.2 program. The current R value is 0.047 ($R_w=0.047$) for 1136 independent absorption-corrected reflections by Gaussian method as mentioned above.
- a) D. Galli, L. Garlaschelli, G. Ciani, A. Fumagalli, S. Martinengo, and A. Sironi, J. Chem. Soc., Dalton Trans., 1984, 55;
 b) A. M. Arif, J. G. Hefner, R. A. Jones, and S. U. Koschmieder, Polyhedron, 7, 561 (1988);
 c) R. D. Pergola, L. Garlaschelli, S. Martinengo, F. Demartin, M. Manassero, and M. Sansoni, J. Chem. Soc., Dalton Trans., 1986, 2463;
 d) T. A. Bright, R. A. Jones, S. U. Koschmieder, and C. M. Nunn. Inorg. Chem., 27, 3819 (1988), and references therein.
- 16) J. W. Lauher, J. Am. Chem. Soc., 100, 5305 (1978).
- 17) Electrochemical data of 2: The half-wave potentials ($E_{1/2}$ vs Fc⁺/Fc) in MeCN at a scan rate of 100 mV/s are as follows: $2+ \rightarrow 1+$, $E_{1/2}$ =-0.90 V; $1+ \rightarrow 0$, $E_{1/2}$ =-1.30 V; $0 \rightarrow 1-$, $E_{1/2}$ =-2.56 V.
- 18) Electrochemical data of 4: $E_{1/2}$ vs Fc⁺/Fc in MeCN at a scan rate of 100 mV/s are as follows: $2+ \rightarrow 1+$, $E_{1/2}$ =-1.21V; $1+ \rightarrow 0$, $E_{1/2}$ =-1.40 V.
- 19) D. E. Richardson and H. Taube, *Inorg. Chem.*, **20**, 1278 (1981).

(Received June 17, 1994)